This commit is contained in:
Lucas F. 2026-01-03 12:27:27 -03:00
commit da8c1563c6
7 changed files with 935 additions and 0 deletions

51
.gitignore vendored Normal file
View file

@ -0,0 +1,51 @@
# Zig build artifacts
zig-out/
zig-cache/
.zig-cache/
# Generated PDFs (test outputs)
*.pdf
# Test data files
*.json
!build.json
*.pdm
*.bin
*.png
*.sh
*.ndjson
# Build binaries
*.o
*.so
*.dylib
*.dll
*.exe
# IDE and editor files
.vscode/
.idea/
*.swp
*.swo
*~
.DS_Store
.claude/
# Temporary files
*.tmp
*.temp
*.log
# Test directories
data/
output/
services/
template_configs/
# Backup files
*.bak
*.backup
# OS specific
Thumbs.db

156
build.zig Normal file
View file

@ -0,0 +1,156 @@
const std = @import("std");
// Although this function looks imperative, it does not perform the build
// directly and instead it mutates the build graph (`b`) that will be then
// executed by an external runner. The functions in `std.Build` implement a DSL
// for defining build steps and express dependencies between them, allowing the
// build runner to parallelize the build automatically (and the cache system to
// know when a step doesn't need to be re-run).
pub fn build(b: *std.Build) void {
// Standard target options allow the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
// It's also possible to define more custom flags to toggle optional features
// of this build script using `b.option()`. All defined flags (including
// target and optimize options) will be listed when running `zig build --help`
// in this directory.
// This creates a module, which represents a collection of source files alongside
// some compilation options, such as optimization mode and linked system libraries.
// Zig modules are the preferred way of making Zig code available to consumers.
// addModule defines a module that we intend to make available for importing
// to our consumers. We must give it a name because a Zig package can expose
// multiple modules and consumers will need to be able to specify which
// module they want to access.
const mod = b.addModule("zdt_prov", .{
// The root source file is the "entry point" of this module. Users of
// this module will only be able to access public declarations contained
// in this file, which means that if you have declarations that you
// intend to expose to consumers that were defined in other files part
// of this module, you will have to make sure to re-export them from
// the root file.
.root_source_file = b.path("src/root.zig"),
// Later on we'll use this module as the root module of a test executable
// which requires us to specify a target.
.target = target,
});
// Here we define an executable. An executable needs to have a root module
// which needs to expose a `main` function. While we could add a main function
// to the module defined above, it's sometimes preferable to split business
// logic and the CLI into two separate modules.
//
// If your goal is to create a Zig library for others to use, consider if
// it might benefit from also exposing a CLI tool. A parser library for a
// data serialization format could also bundle a CLI syntax checker, for example.
//
// If instead your goal is to create an executable, consider if users might
// be interested in also being able to embed the core functionality of your
// program in their own executable in order to avoid the overhead involved in
// subprocessing your CLI tool.
//
// If neither case applies to you, feel free to delete the declaration you
// don't need and to put everything under a single module.
const exe = b.addExecutable(.{
.name = "zdt_prov",
.root_module = b.createModule(.{
// b.createModule defines a new module just like b.addModule but,
// unlike b.addModule, it does not expose the module to consumers of
// this package, which is why in this case we don't have to give it a name.
.root_source_file = b.path("src/main.zig"),
// Target and optimization levels must be explicitly wired in when
// defining an executable or library (in the root module), and you
// can also hardcode a specific target for an executable or library
// definition if desireable (e.g. firmware for embedded devices).
.target = target,
.optimize = optimize,
// List of modules available for import in source files part of the
// root module.
.imports = &.{
// Here "zdt_prov" is the name you will use in your source code to
// import this module (e.g. `@import("zdt_prov")`). The name is
// repeated because you are allowed to rename your imports, which
// can be extremely useful in case of collisions (which can happen
// importing modules from different packages).
.{ .name = "zdt_prov", .module = mod },
},
}),
});
// This declares intent for the executable to be installed into the
// install prefix when running `zig build` (i.e. when executing the default
// step). By default the install prefix is `zig-out/` but can be overridden
// by passing `--prefix` or `-p`.
b.installArtifact(exe);
// This creates a top level step. Top level steps have a name and can be
// invoked by name when running `zig build` (e.g. `zig build run`).
// This will evaluate the `run` step rather than the default step.
// For a top level step to actually do something, it must depend on other
// steps (e.g. a Run step, as we will see in a moment).
const run_step = b.step("run", "Run the app");
// This creates a RunArtifact step in the build graph. A RunArtifact step
// invokes an executable compiled by Zig. Steps will only be executed by the
// runner if invoked directly by the user (in the case of top level steps)
// or if another step depends on it, so it's up to you to define when and
// how this Run step will be executed. In our case we want to run it when
// the user runs `zig build run`, so we create a dependency link.
const run_cmd = b.addRunArtifact(exe);
run_step.dependOn(&run_cmd.step);
// By making the run step depend on the default step, it will be run from the
// installation directory rather than directly from within the cache directory.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// Creates an executable that will run `test` blocks from the provided module.
// Here `mod` needs to define a target, which is why earlier we made sure to
// set the releative field.
const mod_tests = b.addTest(.{
.root_module = mod,
});
// A run step that will run the test executable.
const run_mod_tests = b.addRunArtifact(mod_tests);
// Creates an executable that will run `test` blocks from the executable's
// root module. Note that test executables only test one module at a time,
// hence why we have to create two separate ones.
const exe_tests = b.addTest(.{
.root_module = exe.root_module,
});
// A run step that will run the second test executable.
const run_exe_tests = b.addRunArtifact(exe_tests);
// A top level step for running all tests. dependOn can be called multiple
// times and since the two run steps do not depend on one another, this will
// make the two of them run in parallel.
const test_step = b.step("test", "Run tests");
test_step.dependOn(&run_mod_tests.step);
test_step.dependOn(&run_exe_tests.step);
// Just like flags, top level steps are also listed in the `--help` menu.
//
// The Zig build system is entirely implemented in userland, which means
// that it cannot hook into private compiler APIs. All compilation work
// orchestrated by the build system will result in other Zig compiler
// subcommands being invoked with the right flags defined. You can observe
// these invocations when one fails (or you pass a flag to increase
// verbosity) to validate assumptions and diagnose problems.
//
// Lastly, the Zig build system is relatively simple and self-contained,
// and reading its source code will allow you to master it.
}

81
build.zig.zon Normal file
View file

@ -0,0 +1,81 @@
.{
// This is the default name used by packages depending on this one. For
// example, when a user runs `zig fetch --save <url>`, this field is used
// as the key in the `dependencies` table. Although the user can choose a
// different name, most users will stick with this provided value.
//
// It is redundant to include "zig" in this name because it is already
// within the Zig package namespace.
.name = .zdt_prov,
// This is a [Semantic Version](https://semver.org/).
// In a future version of Zig it will be used for package deduplication.
.version = "0.0.0",
// Together with name, this represents a globally unique package
// identifier. This field is generated by the Zig toolchain when the
// package is first created, and then *never changes*. This allows
// unambiguous detection of one package being an updated version of
// another.
//
// When forking a Zig project, this id should be regenerated (delete the
// field and run `zig build`) if the upstream project is still maintained.
// Otherwise, the fork is *hostile*, attempting to take control over the
// original project's identity. Thus it is recommended to leave the comment
// on the following line intact, so that it shows up in code reviews that
// modify the field.
.fingerprint = 0x6af292c94c0c7302, // Changing this has security and trust implications.
// Tracks the earliest Zig version that the package considers to be a
// supported use case.
.minimum_zig_version = "0.15.2",
// This field is optional.
// Each dependency must either provide a `url` and `hash`, or a `path`.
// `zig build --fetch` can be used to fetch all dependencies of a package, recursively.
// Once all dependencies are fetched, `zig build` no longer requires
// internet connectivity.
.dependencies = .{
// See `zig fetch --save <url>` for a command-line interface for adding dependencies.
//.example = .{
// // When updating this field to a new URL, be sure to delete the corresponding
// // `hash`, otherwise you are communicating that you expect to find the old hash at
// // the new URL. If the contents of a URL change this will result in a hash mismatch
// // which will prevent zig from using it.
// .url = "https://example.com/foo.tar.gz",
//
// // This is computed from the file contents of the directory of files that is
// // obtained after fetching `url` and applying the inclusion rules given by
// // `paths`.
// //
// // This field is the source of truth; packages do not come from a `url`; they
// // come from a `hash`. `url` is just one of many possible mirrors for how to
// // obtain a package matching this `hash`.
// //
// // Uses the [multihash](https://multiformats.io/multihash/) format.
// .hash = "...",
//
// // When this is provided, the package is found in a directory relative to the
// // build root. In this case the package's hash is irrelevant and therefore not
// // computed. This field and `url` are mutually exclusive.
// .path = "foo",
//
// // When this is set to `true`, a package is declared to be lazily
// // fetched. This makes the dependency only get fetched if it is
// // actually used.
// .lazy = false,
//},
},
// Specifies the set of files and directories that are included in this package.
// Only files and directories listed here are included in the `hash` that
// is computed for this package. Only files listed here will remain on disk
// when using the zig package manager. As a rule of thumb, one should list
// files required for compilation plus any license(s).
// Paths are relative to the build root. Use the empty string (`""`) to refer to
// the build root itself.
// A directory listed here means that all files within, recursively, are included.
.paths = .{
"build.zig",
"build.zig.zon",
"src",
// For example...
//"LICENSE",
//"README.md",
},
}

27
src/main.zig Normal file
View file

@ -0,0 +1,27 @@
const std = @import("std");
const zdt_prov = @import("zdt_prov");
pub fn main() !void {
// Prints to stderr, ignoring potential errors.
std.debug.print("All your {s} are belong to us.\n", .{"codebase"});
try zdt_prov.bufferedPrint();
}
test "simple test" {
const gpa = std.testing.allocator;
var list: std.ArrayList(i32) = .empty;
defer list.deinit(gpa); // Try commenting this out and see if zig detects the memory leak!
try list.append(gpa, 42);
try std.testing.expectEqual(@as(i32, 42), list.pop());
}
test "fuzz example" {
const Context = struct {
fn testOne(context: @This(), input: []const u8) anyerror!void {
_ = context;
// Try passing `--fuzz` to `zig build test` and see if it manages to fail this test case!
try std.testing.expect(!std.mem.eql(u8, "canyoufindme", input));
}
};
try std.testing.fuzz(Context{}, Context.testOne, .{});
}

411
src/parser.zig Normal file
View file

@ -0,0 +1,411 @@
const std = @import("std");
pub const NodeType = enum {
text,
variable,
tag,
if_block,
for_block,
};
pub const TextNode = struct {
content: []const u8,
};
pub const VariableNode = struct {
content: []const u8,
};
pub const TagNode = struct {
name: []const u8,
args: []const u8,
raw: []const u8,
};
pub const IfNode = struct {
condition: []const u8, // dupe esse sim
true_body: []Node,
false_body: []Node,
raw_open: []const u8, // slice original, NÃO free
raw_close: []const u8, // slice original, NÃO free
};
pub const ForNode = struct {
loop_var: []const u8,
iterable: []const u8,
body: []Node,
empty_body: []Node,
raw_open: []const u8,
raw_close: []const u8,
};
pub const Node = struct {
type: NodeType,
text: ?TextNode = null,
variable: ?VariableNode = null,
tag: ?TagNode = null,
@"if": ?IfNode = null,
@"for": ?ForNode = null, // <--- novo
pub fn deinit(self: Node, allocator: std.mem.Allocator) void {
switch (self.type) {
.text => if (self.text) |t| allocator.free(t.content),
.variable => if (self.variable) |v| allocator.free(v.content),
.tag => if (self.tag) |t| {
allocator.free(t.name);
allocator.free(t.args);
},
.if_block => if (self.@"if") |ib| {
allocator.free(ib.condition);
// NÃO free ib.raw_open
// NÃO free ib.raw_close
for (ib.true_body) |n| n.deinit(allocator);
allocator.free(ib.true_body);
for (ib.false_body) |n| n.deinit(allocator);
allocator.free(ib.false_body);
},
.for_block => if (self.@"for") |fb| {
allocator.free(fb.loop_var);
allocator.free(fb.iterable);
for (fb.body) |n| n.deinit(allocator);
allocator.free(fb.body);
for (fb.empty_body) |n| n.deinit(allocator);
allocator.free(fb.empty_body);
// raw_open e raw_close são slices originais não free
},
}
}
};
pub const Parser = struct {
template: []const u8,
pos: usize = 0,
pub fn init(template: []const u8) Parser {
return .{ .template = template };
}
fn advance(self: *Parser, n: usize) void {
self.pos += n;
if (self.pos > self.template.len) self.pos = self.template.len;
}
fn peek(self: Parser, comptime n: usize) ?[]const u8 {
if (self.pos + n > self.template.len) return null;
return self.template[self.pos .. self.pos + n];
}
fn skipWhitespace(self: *Parser) void {
while (self.pos < self.template.len and std.ascii.isWhitespace(self.template[self.pos])) : (self.advance(1)) {}
}
fn parseText(self: *Parser, allocator: std.mem.Allocator) !?Node {
const start = self.pos;
while (self.pos < self.template.len) {
if (self.peek(2)) |p| {
if (std.mem.eql(u8, p, "{{") or std.mem.eql(u8, p, "{%")) {
break;
}
}
self.advance(1);
}
if (self.pos == start) return null;
const content = try allocator.dupe(u8, self.template[start..self.pos]);
return Node{
.type = .text,
.text = .{ .content = content },
};
}
fn parseVariable(self: *Parser, allocator: std.mem.Allocator) !?Node {
if (self.peek(2)) |p| {
if (!std.mem.eql(u8, p, "{{")) return null;
} else return null;
self.advance(2);
self.skipWhitespace();
const content_start = self.pos;
while (self.pos < self.template.len) : (self.advance(1)) {
if (self.peek(2)) |p| {
if (std.mem.eql(u8, p, "}}")) break;
}
}
if (self.pos + 2 > self.template.len or !std.mem.eql(u8, self.template[self.pos .. self.pos + 2], "}}")) {
return error.UnclosedVariable;
}
const raw_content = self.template[content_start..self.pos];
const content = std.mem.trim(u8, raw_content, " \t\r\n");
const duped = try allocator.dupe(u8, content);
self.advance(2);
return Node{
.type = .variable,
.variable = .{ .content = duped },
};
}
fn parseTag(self: *Parser, allocator: std.mem.Allocator) !?Node {
if (self.peek(2)) |p| {
if (!std.mem.eql(u8, p, "{%")) return null;
} else return null;
const raw_start = self.pos;
self.advance(2);
self.skipWhitespace();
const content_start = self.pos;
while (self.pos < self.template.len) : (self.advance(1)) {
if (self.peek(2)) |p| {
if (std.mem.eql(u8, p, "%}")) break;
}
}
if (self.pos + 2 > self.template.len or !std.mem.eql(u8, self.template[self.pos .. self.pos + 2], "%}")) {
return error.UnclosedTag;
}
const raw_slice = self.template[raw_start .. self.pos + 2];
const inner = std.mem.trim(u8, self.template[content_start..self.pos], " \t\r\n");
const space_idx = std.mem.indexOfScalar(u8, inner, ' ') orelse inner.len;
const name_raw = inner[0..space_idx];
const args_raw = if (space_idx < inner.len) std.mem.trim(u8, inner[space_idx + 1 ..], " \t\r\n") else "";
const name = try allocator.dupe(u8, name_raw);
const args = try allocator.dupe(u8, args_raw);
self.advance(2);
return Node{
.type = .tag,
.tag = .{
.name = name,
.args = args,
.raw = raw_slice, // slice original, sem dupe
},
};
}
fn parseIfBlock(self: *Parser, allocator: std.mem.Allocator, condition: []const u8, raw_open: []const u8) !Node {
var true_body = std.ArrayList(Node){};
defer true_body.deinit(allocator);
var false_body = std.ArrayList(Node){};
defer false_body.deinit(allocator);
var current_body = &true_body;
var depth: usize = 1;
while (self.pos < self.template.len and depth > 0) {
if (try self.parseText(allocator)) |node| {
try current_body.append(allocator, node);
continue;
}
if (try self.parseVariable(allocator)) |node| {
try current_body.append(allocator, node);
continue;
}
if (try self.parseTag(allocator)) |tag_node| {
const tag_name = tag_node.tag.?.name;
if (std.mem.eql(u8, tag_name, "if")) {
depth += 1;
try current_body.append(allocator, tag_node);
continue;
}
if (std.mem.eql(u8, tag_name, "endif")) {
depth -= 1;
const raw_close = tag_node.tag.?.raw;
// Libera name e args da tag endif
allocator.free(tag_node.tag.?.name);
allocator.free(tag_node.tag.?.args);
if (depth == 0) {
return Node{
.type = .if_block,
.@"if" = .{
.condition = condition,
.true_body = try true_body.toOwnedSlice(allocator),
.false_body = try false_body.toOwnedSlice(allocator),
.raw_open = raw_open,
.raw_close = raw_close,
},
};
}
// Se depth > 0, é endif aninhado adiciona como tag normal
try current_body.append(allocator, tag_node);
continue;
}
if (std.mem.eql(u8, tag_name, "else") and depth == 1) {
current_body = &false_body;
allocator.free(tag_node.tag.?.name);
allocator.free(tag_node.tag.?.args);
continue;
}
// Qualquer outra tag
try current_body.append(allocator, tag_node);
} else {
self.advance(1);
}
}
return error.UnclosedBlock;
}
fn parseForBlock(self: *Parser, allocator: std.mem.Allocator, loop_var: []const u8, iterable: []const u8, raw_open: []const u8) !Node {
var body = std.ArrayList(Node){};
defer body.deinit(allocator);
var empty_body = std.ArrayList(Node){};
defer empty_body.deinit(allocator);
var current_body = &body;
var depth: usize = 1;
while (self.pos < self.template.len and depth > 0) {
if (try self.parseText(allocator)) |node| {
try current_body.append(allocator, node);
continue;
}
if (try self.parseVariable(allocator)) |node| {
try current_body.append(allocator, node);
continue;
}
if (try self.parseTag(allocator)) |tag_node| {
const tag_name = tag_node.tag.?.name;
if (std.mem.eql(u8, tag_name, "for")) {
depth += 1;
try current_body.append(allocator, tag_node);
continue;
}
if (std.mem.eql(u8, tag_name, "endfor")) {
depth -= 1;
const raw_close = tag_node.tag.?.raw;
if (depth == 0) {
// Libera name e args essa é a tag de fechamento final
allocator.free(tag_node.tag.?.name);
allocator.free(tag_node.tag.?.args);
return Node{
.type = .for_block,
.@"for" = .{
.loop_var = loop_var,
.iterable = iterable,
.body = try body.toOwnedSlice(allocator),
.empty_body = try empty_body.toOwnedSlice(allocator),
.raw_open = raw_open,
.raw_close = raw_close,
},
};
}
// depth > 0: endfor aninhado adiciona como tag normal
try current_body.append(allocator, tag_node);
continue;
}
if (std.mem.eql(u8, tag_name, "empty") and depth == 1) {
current_body = &empty_body;
allocator.free(tag_node.tag.?.name);
allocator.free(tag_node.tag.?.args);
continue;
}
try current_body.append(allocator, tag_node);
} else {
self.advance(1);
}
}
return error.UnclosedBlock;
}
pub fn parse(self: *Parser, allocator: std.mem.Allocator) ![]Node {
var list = std.ArrayList(Node){};
defer list.deinit(allocator);
while (self.pos < self.template.len) {
if (try self.parseTag(allocator)) |node| {
const tag_name = node.tag.?.name;
if (std.mem.eql(u8, tag_name, "if")) {
const condition_raw = node.tag.?.args;
const raw_open = node.tag.?.raw;
const condition = try allocator.dupe(u8, condition_raw);
// Libera apenas name e args da tag open
allocator.free(node.tag.?.name);
allocator.free(node.tag.?.args);
// NÃO chame node.deinit aqui raw_open ainda é usado
const if_node = try self.parseIfBlock(allocator, condition, raw_open);
try list.append(allocator, if_node);
continue;
}
if (std.mem.eql(u8, tag_name, "for")) {
const args = node.tag.?.args;
const raw_open = node.tag.?.raw;
const in_pos = std.mem.indexOf(u8, args, " in ") orelse return error.InvalidForSyntax;
const loop_var_raw = std.mem.trim(u8, args[0..in_pos], " \t");
const iterable_raw = std.mem.trim(u8, args[in_pos + 4 ..], " \t");
// DUPE ANTES DE LIBERAR!
const loop_var = try allocator.dupe(u8, loop_var_raw);
const iterable = try allocator.dupe(u8, iterable_raw);
// Agora sim, libera a tag open
allocator.free(node.tag.?.name);
allocator.free(node.tag.?.args);
const for_node = try self.parseForBlock(allocator, loop_var, iterable, raw_open);
try list.append(allocator, for_node);
continue;
}
// Para tags normais
try list.append(allocator, node);
continue;
}
if (try self.parseVariable(allocator)) |node| {
try list.append(allocator, node);
continue;
}
if (try self.parseText(allocator)) |node| {
try list.append(allocator, node);
continue;
}
self.advance(1);
}
return try list.toOwnedSlice(allocator);
}
};
pub fn parse(allocator: std.mem.Allocator, template: []const u8) ![]Node {
var p = Parser.init(template);
return try p.parse(allocator);
}

186
src/parser_test.zig Normal file
View file

@ -0,0 +1,186 @@
const std = @import("std");
const testing = std.testing;
const parser = @import("parser.zig");
test "parse texto simples" {
const allocator = testing.allocator;
const template = "Olá mundo!";
const nodes = try parser.parse(allocator, template);
defer {
for (nodes) |node| {
node.deinit(allocator);
}
allocator.free(nodes);
}
try testing.expectEqual(@as(usize, 1), nodes.len);
try testing.expect(nodes[0].type == .text);
try testing.expectEqualStrings("Olá mundo!", nodes[0].text.?.content);
}
test "parse variável simples" {
const allocator = testing.allocator;
const template = "Olá {{ nome }}!";
const nodes = try parser.parse(allocator, template);
defer {
for (nodes) |node| {
node.deinit(allocator);
}
allocator.free(nodes);
}
try testing.expectEqual(@as(usize, 3), nodes.len);
try testing.expect(nodes[0].type == .text);
try testing.expectEqualStrings("Olá ", nodes[0].text.?.content);
try testing.expect(nodes[1].type == .variable);
try testing.expectEqualStrings("nome", nodes[1].variable.?.content);
try testing.expect(nodes[2].type == .text);
try testing.expectEqualStrings("!", nodes[2].text.?.content);
}
test "parse variável com espaços" {
const allocator = testing.allocator;
const template = "{{ espacos }}";
const nodes = try parser.parse(allocator, template);
defer {
for (nodes) |node| {
node.deinit(allocator);
}
allocator.free(nodes);
}
try testing.expectEqual(@as(usize, 1), nodes.len);
try testing.expect(nodes[0].type == .variable);
try testing.expectEqualStrings("espacos", nodes[0].variable.?.content);
}
test "parse tag simples" {
const allocator = testing.allocator;
const template = "Antes {% minha_tag %} Depois";
const nodes = try parser.parse(allocator, template);
defer {
for (nodes) |node| {
node.deinit(allocator);
}
allocator.free(nodes);
}
try testing.expectEqual(@as(usize, 3), nodes.len);
try testing.expect(nodes[0].type == .text);
try testing.expectEqualStrings("Antes ", nodes[0].text.?.content);
try testing.expect(nodes[1].type == .tag);
try testing.expectEqualStrings("minha_tag", nodes[1].tag.?.name);
try testing.expectEqualStrings("", nodes[1].tag.?.args);
try testing.expect(nodes[2].type == .text);
try testing.expectEqualStrings(" Depois", nodes[2].text.?.content);
}
test "parse if block básico" {
const allocator = testing.allocator;
const template = "{% if usuario.logado %}Bem-vindo!{% endif %}";
const nodes = try parser.parse(allocator, template);
defer {
for (nodes) |node| {
node.deinit(allocator);
}
allocator.free(nodes);
}
try testing.expectEqual(@as(usize, 1), nodes.len);
try testing.expect(nodes[0].type == .if_block);
const ib = nodes[0].@"if".?;
try testing.expectEqualStrings("usuario.logado", ib.condition);
try testing.expectEqual(@as(usize, 1), ib.true_body.len);
try testing.expect(nodes[0].@"if".?.true_body[0].type == .text);
try testing.expectEqualStrings("Bem-vindo!", ib.true_body[0].text.?.content);
try testing.expectEqual(@as(usize, 0), ib.false_body.len);
}
test "parse if block sem else" {
const allocator = testing.allocator;
const template = "{% if cond %}Verdadeiro{% endif %}";
const nodes = try parser.parse(allocator, template);
defer {
for (nodes) |node| {
node.deinit(allocator);
}
allocator.free(nodes);
}
try testing.expectEqual(@as(usize, 1), nodes.len);
try testing.expect(nodes[0].type == .if_block);
const ib = nodes[0].@"if".?;
try testing.expectEqualStrings("cond", ib.condition);
try testing.expectEqual(@as(usize, 1), ib.true_body.len);
try testing.expectEqualStrings("Verdadeiro", ib.true_body[0].text.?.content);
try testing.expectEqual(@as(usize, 0), ib.false_body.len);
}
test "parse if block com else" {
const allocator = testing.allocator;
const template = "{% if cond %}Verdadeiro{% else %}Falso{% endif %}";
const nodes = try parser.parse(allocator, template);
defer {
for (nodes) |node| {
node.deinit(allocator);
}
allocator.free(nodes);
}
try testing.expectEqual(@as(usize, 1), nodes.len);
try testing.expect(nodes[0].type == .if_block);
const ib = nodes[0].@"if".?;
try testing.expectEqualStrings("cond", ib.condition);
try testing.expectEqual(@as(usize, 1), ib.true_body.len);
try testing.expectEqualStrings("Verdadeiro", ib.true_body[0].text.?.content);
try testing.expectEqual(@as(usize, 1), ib.false_body.len);
try testing.expectEqualStrings("Falso", ib.false_body[0].text.?.content);
}
test "parse for block sem empty" {
const allocator = testing.allocator;
const template = "{% for item in lista %}Item: {{ item }}{% endfor %}";
const nodes = try parser.parse(allocator, template);
defer {
for (nodes) |node| node.deinit(allocator);
allocator.free(nodes);
}
try testing.expectEqual(@as(usize, 1), nodes.len);
try testing.expect(nodes[0].type == .for_block);
const fb = nodes[0].@"for".?;
try testing.expectEqualStrings("item", fb.loop_var);
try testing.expectEqualStrings("lista", fb.iterable);
try testing.expectEqual(@as(usize, 2), fb.body.len); // <--- corrigido: 2 nós
try testing.expectEqual(@as(usize, 0), fb.empty_body.len);
try testing.expect(fb.body[0].type == .text);
try testing.expectEqualStrings("Item: ", fb.body[0].text.?.content);
try testing.expect(fb.body[1].type == .variable);
try testing.expectEqualStrings("item", fb.body[1].variable.?.content);
}
test "parse for block com empty" {
const allocator = testing.allocator;
const template = "{% for item in lista %}Tem{% empty %}Vazio{% endfor %}";
const nodes = try parser.parse(allocator, template);
defer {
for (nodes) |node| node.deinit(allocator);
allocator.free(nodes);
}
try testing.expectEqual(@as(usize, 1), nodes.len);
try testing.expect(nodes[0].type == .for_block);
const fb = nodes[0].@"for".?;
try testing.expectEqual(@as(usize, 1), fb.body.len);
try testing.expectEqualStrings("Tem", fb.body[0].text.?.content);
try testing.expectEqual(@as(usize, 1), fb.empty_body.len);
try testing.expectEqualStrings("Vazio", fb.empty_body[0].text.?.content);
}

23
src/root.zig Normal file
View file

@ -0,0 +1,23 @@
//! By convention, root.zig is the root source file when making a library.
const std = @import("std");
pub fn bufferedPrint() !void {
// Stdout is for the actual output of your application, for example if you
// are implementing gzip, then only the compressed bytes should be sent to
// stdout, not any debugging messages.
var stdout_buffer: [1024]u8 = undefined;
var stdout_writer = std.fs.File.stdout().writer(&stdout_buffer);
const stdout = &stdout_writer.interface;
try stdout.print("Run `zig build test` to run the tests.\n", .{});
try stdout.flush(); // Don't forget to flush!
}
pub fn add(a: i32, b: i32) i32 {
return a + b;
}
test "basic add functionality" {
try std.testing.expect(add(3, 7) == 10);
}